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1 INTRODUCTION

The design of aircraft subsystems typically requires large amounts of
information which must be evaluated in order to obtain improved
subsystem configurations. Traditional optimization techniques can be used
to find the solution to the design problem when the system in question is
composed solely of either continuous (such as wing span) or discrete
(material properties, number of spars...) design variables. These
techniques, however, are in many cases inadequate when faced with the
task of optimizing mixed discrete/continuous systems.

Considering the vast amount of information required for the aircraft
system design problem, how do we generate "optimal" designs with
constraints on time and computational resources? Further complicating
the subsystem design problem is the fact that discrete design variable
optimization generally requires a procedure such as simulated annealing or
a genetic algorithm which require an extremely large number of objective
function evaluations. The reduction of the number of these objective
function evaluations is a high priority. The purpose of this study was to
address issues pertaining to design space representation and evaluation for
structural design problems which contain both discrete and continuous
design variables.

The method by which the design space definition for the mixed
discrete/continuous design variable problem was addressed in this study
was through the use of artificial neural networks. These networks have
been shown to provide a useful tool for storage and manipulation of design
data obtained from conventional analysis techniques for systems of either
continuous1-3 or discrete 1 '4 "6 design variables, but realistic design
problems containing both continuous and discrete variables have not yet
been considered in detailt The current research employed feed-forward,
back propagation neural networks to provide an approximation to a mixed
discrete/continuous design space.

A hierarchic design problem was considered in which conventional
numerical structural analysis and optimization methods were used to
develop the design information at the lowest level of the hierarchy. These
methods provided "feasible designs" in which only a part or "subspace" of
the complete set of system design variables were considered. The
information determined for these feasible designs was then used to "train"

1 All references are cited in the text as superscripts and appear listed in sequence at
the end of the report.
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the neural networks. The resulting neural networks were used to perform
an optimization using the remaining design variables which were both
discrete and continuous in nature.

The methods considered in this study were evaluated by application
to a relatively straightforward structural design problem. This problem
was selected since it provided the basic characteristics of both continuous
and discrete design variables and was simple enough to allow for graphical
presentation of various results. The sections which follow briefly describe
the specific design problem, the way in which neural networks were used
to map the design space for this problem and the methodology used to
obtain optimal solutions by using the neural networks. This is followed by
a more detailed discussion of results when these methods were applied to
the simple structural example problem.

2 THE DESIGN PROBLEM

The problem under investigation in this study was the conceptual
design of a structure for which the design vector was comprised of both
discrete and continuous design variables. Since the focus of the
investigation was the mapping of design spaces containing both discrete
and continuous design variables it was desired that the problem to which
the design space mapping techniques were applied be easily analyzed, yet
provide a design space with realistic complexity.

The "design problem" as posed for this study was actually a sequence
of two problems, or a two-step heirachic design problem, with unique
design variables at each level and the same merit function. The first step
was a subspace optimization using continuous design variables only and a
design algorithm based upon an optimality criteria. The seconc Step was
the continuous/discrete design problem which used the neural network.
When one considers the design of a structure it typically involves the
soelection of the basic geometric arrangement, or configuration, the
selection of the materials to be used in the structure, the material system,
and finally the "sizing" of the components which make up the structure.
There have been many methods developed which allow for the sizing or
"optimization" of structural components for a given configuration and
material properties and these are often based upon finite element
representations of the structure. The selection of the component sizes for a
given structure is referred to as a "subspace" optimization.

Including the selection of the material system and configuration in
the design "optimization" may allow for even better designs but these
types of design variables are more difficult to include in many of the
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current optimization schemes. This is often the result of the fact that the
finite element method used to ,tiodel and analyze the structure is not as
easily adaptable to variations *n configuration and material properties as it
is to variations in compon.,,t sizing. An additional complexity is due to the
the discrete nature of some of the configuration and material property
design variables and the difficulty associated with using either optimality
criteria or "gra-ient" based optimization algorithms to perform the design
process.

In the current study, traditional finite element analysis techniques
were used to model and analyze the structure. For a given configuration
and material properties a simple optimality criteria design procedure was
used to determine the "best" design for that configuration and material
system. Then the design space represented by the configuration and
materials design variables was evaluated to determine the configuration
and materials which yielded the "best" of the "best" designs. In order to
provide graphical representations of the design space for this simple
problem, the candidate structure was selected so that the number of
discrete design variables was kept small. It was decided that the design of
a five bar truss structure could provide a realistically complex design
space while the subspace optimization could be accomplished quickly and
without investing large amounts of time in developing an extensive set of
analysis and optimization software. Described below is the simple
structural example examined in this study and the method of analysis and
the subspace design alorithm.

2.1 The Five Bar Truss

The problem under consideration was the decign of a statically
indeterminant five bar truss (see Figure 1) in 'which the design variables
were the material of each of the rod elements (aluminum or titanium thus
yielding 32 or 25 discrete combinations) and the x-coordinate of node 2 (a
continuous design variable) with the objective being design for low weight.
The truss was fully constrained in both x and y directions at nodes I and 4
and constrained to movement in the x-direction only at node 2. By posing
the problem in such a manner the region of the design space associated
with each of the 32 material combinations can be displayed as a
continuous functional relationship between weight and the x location of
node 2. The five bar truss selected for this study was subjected to two
different loading conditions. The first load case (Figure 2) involved loads
applied to the structure at Node 2 and Node 3. The load at Node 2 was a
5000 pound tensile load and the load at Node 3 a 1000 pound tensile load.
For load case 2 (see Figure 3) the design space was determined by 5000
pound compressive loads at both Nodes 2 and 3.
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2.2 Method of Analysis

Analysis of the structure was accomplished through a fully stressed
design algorithm, therefore the designs produced are not minimum weight
designs, but represent a class of designs which were considered "best" for
this application. The fully-stressed design procedure was based upon a
simple finite element code coupled with an element resizing algorithm. In
the finite element algorithm the truss elements were modeled as rod
elements capable of supporting only axial loads; hence, the connections
between the truss elements were considered to be pinned at all nodes and
supports.

The fully-stressed design optimality criteria requires that truss
elements be resized such that each member was at its allowable stress
limit or was at a minimum gauge constraint. Resizing was accomplished by
comparing the stress in the members as determined through the finite
element analysis with the yield stress for each member. The ratio of the
axial stress in the member to the yield stress (tensile and compressive
yield stresses were assumed to be the same in this study) was used to
determine an incremental change in the area of the member according to
the relationships:

Fr (3y aallI

Ž1 .0 Ae A* Fr

If gr 0.9 - gr < 1.0 Anew A*(gr)2 all

<0.9 Anew A*(gr)

and if

Anew < Amin, Anew = Amin

where Fr is the force in the rod. The procedure described above is an
iterative process, hence a finite element analysis Vas performed and the
rod elements resized until the area of the truss members reached either
the stress constraint or minimum gauge (0.01 square inches for this study)
within a tolerance of 0.1%. The tolerance was set at 0.1% since this
represented a small difference between the fully-stressed design state and
the final design state. Additionally, for this method of analysis a 0.1%
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tolerance in the resizing algorithm was attainable with very little
computational effort.

The purpose of subspace design problem described above was to
provide the data to be used to develop quantitative descriptions of design
space which represented the "best" designs for a specific configuration and
material system. For structures which are comprised of a single material,
this fully-stressed design optimality criteria converges to the least weight
design for the structure regardless of the initial design vector. However,
for structures containing more than one material the fully-stressed design
algorithm is known to yield final designs which are not "least weight" and
which were sensitive to initial conditions. Since the purpose of the
subspace design process was to provide designs for the neural network
design space modeling it was determined that for this study the only
requirement on the subspace design problem was that it produce a
consistent family of designs. In order to obtain fully-stressed designs
which were consistent throughout the design space considered for this
problem, the inital component sizes were manually adjusted and a set of
inital sizes identified so that all the subspace design problems started from
the same set of initial component sizes and they each converged to a
consistent fully stressed solution.

3 DESIGN SPACE MAPPING

In order to reduce the computational expense required to optimize
design spaces, neural networks were employed as approximations to the
design spaces represented by the configuration and material design
variables. Because of the success of feed-forward, back propagation neural
networks with a sigmoid activation function in representing structural
design spaces which contain only continuous design variables1 and design
spaces which contain only discrete design variables 4 , these networks were
utilized for the approximation of design spaces containing both discrete
and continuous design variables. The NETS computer program developed
at NASA Johnson7 was used to create the neural networks employed in this
study.

Some of the issues involved in using neural networks to do design
space mapping are how to configure the neural network, how much
training data is required to "sufficiently" train the neural network, and
how is the training data selected. These issues are not independent of one
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another and are discussed in the following sections as they were

encountered in the course of this study.

3.1 Neural Network Configuration

One of the difficulties that arises early in the process of using neural
networks in any application is determining a configuration of the network
which is "optimal" for the particular problem. This issue has been
addressed in some detail 8 ' 9 . In the present study, however, it was only
necessary to determine a network configuration which would yield a
reasonable approximation to the design space and there did not appear to
be a requirement that this be an "optimal" network. Through numerical
experimentation it was found that a network with 6 neurons in the input
layer, 20 neurons in the only hidden layer, and 2 neurons in the output
layer (a 6-20-2 network) could provide a model for the problem under
consideration which was as accurate in representing the training data as
other networks considered. The 6-20-2 network was selected for this
study because the time associated with training this network was less than
that for networks of comparable accuracy. This configuration was selected
through a study in which a series of networks was trained with 160
input/output pairs (lOPs). The IOPs are sets of data representing each
design from a subspace design problem. The "I" or input in the lOP
represent the material and configuration design variables and the "0" or
output are the structural characterisitics used as merit functions such as
weight or displacement.

These candidate designs or lOPs used for the study to select the
neural network configuration were evenly distributed throughout the
structural design space. This training data was developed by performing
subspace optimizations for structures where the design variable associated
with the location of Node 2 was uniformly spaced for each of the 32 unique
material combination. This represents Node 2 locations of 7.0, 8.5, 10.0,
11.5, and 13.0 inches.

The selection of the neural network representation for the design
space for this simple structural problem was simplified by the fact that the
a very complete representation of the entire design space could be
achieved by performing a large number of the subspace design problems.
Thus a nonparametric representation of the design space could be
presented in a graphical fashion by simply plotting this exhaustive set of
individual results and then comparing against the parametric
representation of the design space in the form of the neural network. In
most realistic design problems this cannot be done since the subspace
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designs are far to "costly" to allow for this exhaustive representation of the
design space.

An implication of selecting the neural network by comparing its
representation against the actual form of the design space is that the
uncertainty of the fit of the neural network to the design space was
eliminated from this particular problem by choosing the network which
provided the best representation of the problem for the given set of
training data. Additionally, by choosing the best mapping to the design
space, information has been utilized in this problem that is not available in
a realistic design problem. These considerations were not critical in this
study since the goal was to demonstrate the ability of neural networks to
map design spaces which contain both discrete and continuous design
variables.

3.2 Neural Network Training

Once the network configuration has been selected - however it is
accomplished - it is necessary to train the network to approximate the
design space. But how much training data is available or necessary given
that the impetus for application of neural networks is to reduce the -ost
associated with running complex analysis methods? Also, how is training
data generated such that the neural network is able to adequately
represent the region in the design space in which the "optimal" design
resides? These questions are still open for debate, but recursive training is
an area which shows promise in the resolution of some of these issues1 . In
order to analyze the potential of neural networks and not get involved
with concerns which are not central to the task at hand, the ambiguity
resulting from these issues was removed from the problem by training
networks with "sufficient" data to characterize the known design space. In
this instance sufficiency is satisfied when the general trends of the neural
network approximation to the mixed discrete/continuous design space are
the same as those seen in the graphical representation from the exhaustive
set of subspace designs.

Neural network representations of the design space were obtained
for each of the load cases discussed above. In both cases the 6-20-2
network was employed where the inputs to the networks were the
material of each of the five truss elements and the location of node 2. The
outputs of the network were the weight of the structure and the
displacement of node 2. Since there were only two material choices for
each rod element, the material property inputs to the neural network were
either 0.1 or 0.9 corresponding to material I or 2 for each finite element.
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For problems in which there are a greater number of material choices the
inputs to the neural network can be described by assigning an input node
to each material choice for each rod element; therefore, for a truss
consisting of 5 rods and 4 candidate materials for each element, the
number of input nodes would be (4)(5) = 20. The value of the inputs could
then be 0.1 if the rod is not made from the material represented by the
node and 0.9 if the rod is made from the material represented by the node.
This was the approach used in Reference 1 for a space structure containing
113 elements and 4 material choices for each element, thus resulting in
452 input nodes. This illustrates the neural network complexity that can
result from rather simple problems if prudent selection of design variables
is not exercised.

Initially, a network was trained to represent the design space for
load case 1. Since training data had been obtained in order to determine
the network configuration, this data was used to train the first network.
Therefore, the first network considered to represent load case 1 was a
network trained with data which was evenly spaced throughout each of
the material combinations (160 IOPs). Additionally, a network trained
with only 25% (40 IOPs) of the original data which were randomly chosen
from the inital set of 160. The 40 IOP set represented a nominal value of
1.25 input/output pairs per material combination; however, some material
combinations were represented by three training data sets and some were
represented by no training data. Although under realistic circumstances
40 analysis runs could be quite costly, here 40 training points provided the
network enough data to approximate the design space without forcing the
network to simply "interpolate" between sparse data points. The second
load case was analyzed in the same way as the first with the addition of a
network which was trained with 40 IOPs scaled in a different manner than
for load case 1 as is discussed below.

3.3 Training Data Generation

The training of a neural network requires the generation of
input/output pairs. For the examples illustrated here the training data
was determined through the subspace design problem discussed above.
Each subspace design for a given set of materials and node 2 location
provided an IOP. The training data was scaled between 0.1 and 0.9 for
network training after the desired number of training points were
generated (160 IOPs in this case). The need to scale the training data arose
due to the nature of the sigmoid activation function. Initially, the reduced
set of only 40 IOPs for network training was selected from the original set
of scaled data; however, by selecting the IOPs after scaling based upon the
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entire range of 160 candidate designs, the manner in which the network
must extrapolate from the range represented by the training data is
influenced. In other words, by scaling on the entire set of 160 IOPs, the
network outputs were also scaled between 0.1 and 0.9, requiring only
minimal extrapolation since this represents a rather "complete"
representation of the entire space. By scaling the training data after it has
been selected from the 160 IOP data set, only that region of the design
space which is represented by the smaller set of data is found between the
0.1 and 0.9 bounds. Inputs subsequently propagated through a network
scaled as such require the network to determine outputs which may well
lie outside the scaled data range. In fact, for realistic design problems in
which the training data are not near the optimal solution, network
extrapolation is inevitable and the ability of the neural networks to
"extrapolate" to improved designs is one of their most important attributes.

The issue of when to scale training data came about in this study due
to the size of the problem under investigation. Since the analysis required
to obtain data for the five bar truss was very fast, it was possible to
generate as much training data as desired and then try to estimate the
amount which would actually be used in a more realistic problem.
Typically, all of the training data that is available would be used to train
the network. An exception to this is that large amounts of training exist
and to teach the network with all of the data would take a long time.
Consequently, a subset of the available training data would be used to
represent the available design information from the entire data set.

4 DESIGN SPACE OPTIMIZATION

A problem has been posed, subspace designs indentified, and the
design space approximated, so how is the "best" design determined? The
attractiveness of using neural networks to approximate the design space is
that the cost (and time) of objective function evaluations is significantly
reduced, thus the efficiency of the optimization routine, while still
important, is not an overriding concern. In this study, two concepts for
optimization of systems containing both discrete and continuous design
variables were explored. These methods were not streamlined to produce
the most efficient algorithms possible, rather it was desired to explore the
issues related to optimization of mixed discrete/continuous systems.
Nonetheless, comparison of these methods with exhaustive search using
the neural networks was performed, not in the interest of improved
computational time, but to assess the effectiveness of the optimization
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concepts in determining the "optimal" solution to the neural network

representations.

4.1 Exhaustive Search

In order to obtain the benchmark solution to which other solutions
were compared, an exhaustive search of all material combinations was
performed. This optimization was conducted using Newton's method
independently for each of the 32 discrete material combinations. Since the
resultant design spaces for each material combination were either
monotonically increasing, thus having their extremum at a limit of the
continuous design variable) or had only one local minimum, Newton's
method was guaranteed to converge to the optimal "configuration" solution
for each material combination. The tolerance for solution convergence was
on the order of 10-4 inches. Then one was able to simply select the
minimum weight design from the set of 32 individual designs. This
approach to identifying the best design for the combined
continuous/discrete problem was only possible due to the small overall
design space for this sample problem - that is one of the reasons that this
problem was selected.

4.2 Simulated Annealing (SA)

Generally a simulated annealing algorithm is applied to systems
containing discrete variables and is effective for determining the region in
the design space in which the global optimum solution exists4 . In this
study simulated annealing was explored as an optimization alternative
since the inputs to the neural network were, ., predominantly discrete (5
discrete variables and only one continuous variable). The issue was then
how to handle the continuous design variable in this type of algorithm.

The principle on which simulated annealing is based is that a new
candidate design is generated and accepted as the current design if the
"energy" of the new design is less than or marginally greater than the
previous design. In the annealing process the "energy" is related to the
temperature of the material and at a given temperature the energy can
assume any value in an appropriate statistical distribution. As the
temperature is reduced, the allowable "excursions" in energy also are
reduced. In the current application, the "energy" of the system is the
weight which is a direct function of the design variables. Figure 4 presents
a flowchart outlining the logic used in the simulated annealing algorithm.
In this application the energy of a design is the objective function (the
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weight of the structure). The probability of accepting a candidate design is
based on the energy (weight) of the previous design as compared to the
energy (weight) of the current design and the "temperature". In the
application of "simulated" annealing, the temperature is a control
parameter which is used to decide whether or not "changes in energy" (i.e.
weight) will be accepted as new designs. In order to apply this algorithm a
"Itcooling schedule" must be established which controls the rate at which the
"fenergy" or weight is reduced. Although SA algorithms are most often used
in optimization problems containing discrete design variables, there is no
requirement that the design vector be comprised of discrete designC
variables. In this study SA was implemented for a system containing both
continuous and discrete design variables.

The utilization of simulated annealing in discrete optimization
problems is influenced by the candidate design selection process and
convergence properties. In traditional SA algorithms candidate designs are
randomly determined and are entirely independent of the current "best"
design. In this study potential designs were determined by perturbing the
current design. This was achieved by altering a random subset of the total
number of design variables (from I1 6 in this case). In this way an
entirely new design vector was obtained approximately 17% of the time;
therefore, the remaining 83% of the time design vectors which were
generated contain at least some of the information from the current design.
This procedure retained the ability to escape from local extrema in the
design space while utilizing design space knowledge to determine new
designs. This was made possible by the way in which the continuous
design variable was perturbed.

The continuous design variable (Node 2 location in this case) was
altered by perturbing it about the previous value with a perturbation size
from -0.1% - 10% of the total range. The amount by which the variable
was altered was "discrete" in the sense that it is fixed by the resolution of
the computing system or by the choice of minimum and maximum percent
change; however, by changing the continuous variable by a random
percentage of itself it was possible for the variable to take on any value in
the design space. This allowed the algorithm to approach the "optimal"
solution without requiring the use of traditional continuous design space
optimization strategies.

4.3 Successive Simulated Annealing (SSA)

The Successive Simulated Annealing (SSA) algorithm is a heuristic
optimization procedure based on traditional simulated annealing
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techniques. The primary difference between Successive Simulated
Annealing and the simulated annealing approach described above is the
way in which the continuous design variable was manipulated. In the SSA
procedure the continuous design variable was discretized in a rather
"coarse" manner over the entire range of the continuous design variable,
simulated annealing was performed using this coursely discretized design
space. Based upon the best design identified using this coarse resolution of
the design space a new allowable range for the continuous design variable
was selected and the design space was again discretized. The resolution of
the discretization in this reduced range about the preliminary solution was
much finer, and simulated annealing was performed again. This procedure
was continued until no change in the discrete design variables was
detected between successive discretizations. The flowchart for this
algorithm is presented in Figure 5.

Once this procedure converged, it was assumed that algorithm had
provided the material systems which would allow for the best design. As
one final step in the process a simple configuration optimization was
performed to finalize the Node 2 location. An optimization again using
Newton's method for a fixed set of material properties was performed with
the starting value of the node 2 location obtained from the most recent SA
analysis. Design generation for the SSA algorithm was performed as in the
simulated annealing procedure described above except that the continuous
design variable was allowed to assume only discrete values in the current
allowable range.

5 RESULTS AND DISCUSSION

Since one of the primary goals of this study was to approximate
design spaces using neural networks, it was useful to have the ability to
graphically represent the design spaces of interest. For this study the
design space consisted of a "continuous" relationship between the weight of
the structure and the x-location of node 2 of the structure for each
material combination. The results of performing the fully-stressed design
procedure on the truss subjected to load case 1 showed a monotonically
increasing (almost linear) relationship between the truss weight and node
2 x-location for all material combinations. It is due to this monotonicity
that an alternative load case was considered. Even though the design
space for load case 1 was relatively benign, it was still used to determine
the ability of the neural network to represent this discrete design space.
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A 6-20-2 neural network was trained with data from the stubspace
component design for load case 1. The ability of the neural network to
represent this design space can be graphically illustrated by the functional
dependence of weight on node 2 location. Figures 6-8 illustrate this
dependence for three representative material combinations. For this load
case a neural network was initially trained with 160 training data sets
(lOPs) which were evenly distributed throughout the design space; each of
the 32 material combinations. The notation used in this report to indicate
the material system for the structure uses "I" to represent aluminum and
"2" for titanium. The material system is indicated as a sequence of
numbers representing the composition of truss members 1 through 5
respectively, (e.g. 12121, has element 1 made of aluminum, element 2 of
titanium, etc.). The node 2 location in the training data was evenly
distributed at nodal locations 7.0 inches, 8.5 inches, 10.0 inches, 11.5
inches and 13.0 inches (denoted by circles in the figures). Once the
networks were developed using the training data, one could evaluate the
structural weight using the neural network alone. The "lines" plotted in the
results presented in the report are developed by propogating a design
identified by its material combination and node 2 location (input design
variables) throught the network to determine the output (structural
weight).

In Figures 6-8 it can be seen that the neural network trained with
160 lOPs was able to map the design space very accurately. For this
reason it was concluded that the design space could be adequately
modelled with fewer training data points (and a corresponding reduction
in computation cost from that required for the 160 training sets). The
decision was made to represent the design space with 40 randomly
selected training data points (25% of the original network training data),
nominally 1.25 IOPs/material combination.

The 40 data points used to train the subsequent network were
obtained from the original data set of 160 scaled IOPs. Since the original
training data was scaled to the range of the inputs and outputs of the
larger data set, information was being added to the design space and the
neural network was required to extrapolate network outputs in a smaller
range than if the data were scaled to the maximum and minimum values
of the reduced data set itself. For example, in the 160 IOP data set the
minimum weight in the set was scaled to 0.1. If the point corresponding to
the minimum weight in the 160 IOP set was not selected as one of the 40
training points, the neural network must only extrapolate to the
neighborhood of 0.1 when the inputs corresponding to the minimum
weight in the 160 IOP set was propagated through the network. When the
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data in the 40 IOP set was scaled based upon its own range, if the
minimum weight in the 160 IOP set was not included in the 40 IOP set,
then the neural network must be capable of determining this weight based
on its corresponding inputs. This scaled weight would be less than 0.1, and
in the range in which the neural network has no information concerning
the design space. Outputs which are significantly less than the training
minimum value of the output (based on a percentage of the full data
range) are necessarily distorted from their predicted values. Caution
should be exercised in the interpretation of neural network outputs which
are significantly less than 0.1 or greater than 0.9 for these types of neural
networks.

Three representative material combinations for the 6-20-2 neural
network trained with 40 randomly selected input/output pairs for load
case 1 are depicted in Figures 6-8. For a material combination in which no
training data was present (Figure 6), the neural network trained with 40
lOPs was able to fairly accurately map this portion of the design space.
Additionally, for other material combinations in which training data did
exist, the neural network represented the training data more accurately
while approximating the remainder of the design space in an acceptable
fashion. This is shown in Figure 7 where one training data point was
present for the material combination (1,1,2,1,1) and the training data point
was almost exactly represented while the remainder of the design space
for this material combination was approximated fairly well. In Figure 8 it
can be seen that the design space was even more accurately modeled when
two training points were present for a particular material combination.

Having demonstrated the feasibility of using neural networks in
mapping mixed discrete/continuous design spaces for this simple load case,
the mapping of a more complex design space was also desired. The
somewhat more complex design space was provided by fully-stressed
design data for load case 2. The results for load case 2 are represented in
the same way as those from load case 1. The neural network
representations for the load case 2 design space are depicted in Figures 9-
11 and compared with the design points used to train the networks. The
networks trained with 40 IOPs were represented by only one training data
point for material combination (1,1,1,1,1) as shown Figure 9. In general,
the training data points were well mapped by the neural networks and for
material combinations which contained only one training data point the
remainder of the design space was better mapped than for a material
combination which contained no training data points (as in Figure 10), but
not as well mapped as a material combination containing two training data
points (as in Figure 11).
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As before the design space was represented by neural networks
trained with 160 IOPs and 40 lOPs. In addition, a third neural network
trained with the same 40 lOPs but scaled based upon the range of the
reduced size set was employed. All three networks were again capable of
mapping the trends of the design space with some degree of success. At
training points the networks were accurate in their mapping, but all
networks were unable to resolve the discontinuities in "slope" in the design
space with the amount of training data provided.

Another way to view the accuracy of the neural network mappings
of the design space is to compare the weight predicted by the neural
networks at a particular node 2 location for all material combinations. This
provides a graphic representation of the "discrete" design space and helps
to illustrate some of the issues related to dealing with discrete design
variables. The particular node 2 location chosen for this study was in the
center of the range, 10 inches. At this location the network trained with
160 lOPs represented the fully-stressed design solution quite accurately
(see Figure 12). In Figure 12, the abscissa represents the material
combination. There is no "logical" to sequence the various material
combinations and the "shape" of this information obviously depends upon
the sequence. Visual inspection allows one to determine the least weight
material system for this configuration. But visual inspection, or an
exhaustive search, become impossible as the total number of combinations
becomes even moderate.

Figure 13 shows the same representation for the network trained
with a 40 IOP set taken from the 160 lOP scaled set. For some material
combinations the weight predicted by the neural network at this location
were off by as much as 6%, but the minimum value of predicted weight
occured for the same material combination as the minimum weight
material combination as determined by the fully-stressed analysis. This
trend was repeated for the neural network trained with 40 IOPs which
were scaled to the minimum and maximum values within the data set as
illustrated in Figure 14.

As a final attempt to more accurately map the piecewise continuous
nature of the design space a 6-20-2 network was trained with 672
input/output pairs (21 training points per material combination) which
were evenly distributed throughout the continuous design space. The
resultant approximation of this neural network to the design space is
illustrated in Figure 15 for three material combinations. The
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approximation of this network to the computational solution is fairly
accurate, even in the region of the slope discontinuities.

The portion of Figure 15 denoted as segment I represents designs in
which 2 of the truss elements are at minimum gauge constraints. For all
material combinations the members which were at minimum gauge along
this segment of the plot were always from the set of elements 3,4,5. The
discontinuities which exist between segments I and 2 and between
segments 2 and 3 of the graph occur because the number of elements at
minimum gauge changes. Along segment 2 members 3, 4, and 5 are all at
minimum gauge for all material combinations. On segment 3 the fully-
stressed subspace component design again yields 2 members at minimum
gauge from the set of members 3, 4, and 5, but not necessarily the same
members as were at minimum gauge on segment 1.

Once the design space has been determined to be "adequately"
approximated, the issue which remains is then if neural networks trained
with relatively little data can represent the design space accurately enough
to obtain the "best" solution in the design space. To address this issue,
optimization of the design space using the trained neural networks was
perf ormed.

For load case I the optimal solution in the design space as identified
by the exhaustive design space search strategy was for material
combination 2,2,1,1,1. The location of node 2 of the truss in the optimal
solution was determined to be 7.0 inches which is along one of the side
constraints for the continuous design variable. The results of the
simulated annealing and successive simulated annealing optimization
strategies on the neural networks for load case I yield final design points
which are the same as those obtained from the exhaustive analysis. This
was expected since the neural network approximations to the design space
for load case I were very close to the finite element solution. The fact that
all of the methods yielded the same solution appears to be the result of the
simple "shape" of the design space and the fact that the least weight design
occured along a side constraint.

One of the issues involved with the generation of neural networks to
represent the design space associated with a particular analysis method is
the amount of training data required such that optimization of the neural
network representation of the design space leads to the region in which
the "best" solution exists. For load case 2 the neural network
representations which incorporated 160 and 40 input/output pairs both
exhibited design spaces in which the "slope" or gradient with respect to the
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node 2 location was continuous rather than the piecewise continuous
nature of the actual design space. The concern was that this smoothing of
the design space would subsequently cause the optimization routines to
select a different material combination for the optimal solution. The
results of applying the optimization strategies to the neural networks
trained for load case 2 are given in Table 1. From an exhaustive
examination of the design space as defined through finite element analysis,
the best design was determined to be for material combination 2,2,1,1,1
(same labeling convention as before) with a node 2 location of 11.12
inches. Analysis of this design point yields a structural weight of 0.248
pounds.

The first item of note in Table I is that for all networks and
optimization routines the material combination 2,2,1,1,1 was selected as
the best design. For this sample problem and load case, the smoothing of
the design space by the networks was such that the optimal design state
remained identifiable. Having determined the appropriate values of the
discrete variables, comparisons among the individual networks can be
made. In all cases the method used to identify the least weight design had
was not as important as the characterization of the design space by the
neural network. Each technique yielded substantially the same least
weight design and the only difference between them was due to the
difference in the neural networks which were used to model the design
space. Since the dependence of the final design on optimization procedure
had essentially been eliminated from this particular problem, assessment
of the networks was based upon two criteria, how well the network
represented the correct node 2 location and how well the network
represented the final structural design weight.

By examining the neural network approximations to the final node 2
location as shown in Figure 16, it can be seen that the 672 lOP network
provided the best representation to the design space of the four networks
considered here. This was the expected result; however, comparison of the
two 40 lOP networks was somewhat unexpected. The network which was
trained with the 40 input/output pairs which were scaled only in the
range in which the data existed (the. network which was required to
extrapolate to obtain the "optimal" design weight) yielded better results
(6.8% error) than the network which was trained with data taken from the
160 scaled input/output pairs (10% error). It should be noted that the
training data points were the same for both networks and the networks
were trained to the same tolerance with the same network training criteria
(global momentum, training rate, ... ).
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Since design decisions are based on the weight of the structure, the
weights as determined by the neural networks were compared in order to
assess the accuracy of the network mappings. As can be seen in Table 1,
the neural network trained with 40 lOPs taken from the scaled set of 160
lOPs resulted in the value of weight which was closest to the correct
weight of the structure as -"redicted by the neural network (0.04% error);
however, this network was also the furthest from the true node 2 location
for a least weight design. The other three networks resulted in final
designs which were only slightly worse in terms of the predicted design
weight of the structure. Because the reason for integrating neural
networks into optimization routines is to provide a quick, accurate
approximation to analysis methods and leave the detailed calculation of
results to the complex analysis tools, one should use the network to
identify important trends and not necessarily to provide eexact "
representations of the design space. As long as the trends in the design
space remain intact and the networks lead the designer to the region in the
design space in which the optimal solution exists, the value of the objective
function as determined by the neural network is of less importance.

All of the work described above was conducted using 6-20-2 neural
networks where the outputs to the network were the structural weight
and the displacement of no& 2 under loading. However, the second
output, the displacement of node 2 was not considered in the optimization
procedures in this study. For this reason another neural network was
trained, this time with only 1 output, structural weight. This network was
trained with the same 160 input/output pairs as the 160 lOP network
used in load case 2. A comparison of these two networks is shown in
Figure 17. The material combinations illustrated in this figure are
representative of the entire design space as before. Due to the smaller
number of connections between nodes which must be modified in the 6-
20-1 network, this network appears to be a better approximation of the
relationship between node 2 location and weight for this problem. The
implications are that the selection of both the input and output used in
training the neural network can influence the accuracy of the design space
representation.

6 CONCLUSIONS

The primary goal of this study was a preliminary investigation of the
design of systems which contain both discrete and continuous design
variables. As a means of expediting this design process the use of feed-
forward, back-propagation neural networks for the storage of design

18



information for mixed discrete/continuous design spaces was explored. It
was discovered that neural networks can accurately represent these mixed
design spaces in which discontinuities exist when the networks are
developed using adequate amounts of training data.

In the design process it would be ideal to represent the design space
using as few training data points as possible (which are typically generated
through costly analysis procedures). For a simple structural problem
containing both discrete and continuous design variables it was
demonstrated that the character of the design space could be well
represented with a relatively small amount of training data. Even though
certain details were not recognized in the neural network approximation to
the design spaces, general trends were preserved and those design
variables which were of greatest importance could be identified.

I: has also been shown that design methods are available which can
be used for mixed discrete/continuous design variable problems. These
methods are however limited by the discontinuous nature of the discrete
design problem and by the ability to predict system characteristics in an
efficient manner. The discontinuous nature of the design problem can be
addressed through the use of a class of genetic optimization routines,
simulated annealing. Efficient prediction of system characteristics is
realized through the neural networks described here. By these approaches
with feed-forward, back-propagation neural networks an efficient method
for the design of mixed discrete/continuous systems can be obtained.
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Optimization Neural Network Fully Stressed
Number of lOPs Procedure Node 2 Location Weight Design Weight

160 Exhaustive 10.6562 0.250739 0.249499
SA 10.6753 0.250740 0.249456
SSA 10.6220 0.250745 0.249578

40 (Entire Space) Exhaustive 10.09553 0.248933 0.250715
SA 10.13846 0.248935 0.250611
SSA 10.01639 0.248944 0.250909

40 (Data Region) Exhaustive 10.43837 0.252408 0.250004
SA 10.45823 0.252409 0.249957
SSA 10.45715 0.252409 0.249960

672 Exhaustive 10.61780 0.250410 0.249550
SA 10.51475 0.250459 0.249784
SSA 10.58310 0.250417 0.249628

Actual Optimum 11.119895 0.24848102

Table 1. Optimization Results for Load Case 2
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